
Detecting Covert Members of Terrorist
Networks

Alice Paul

Susan Martonosi, Advisor

Nicholas Pippenger, Reader

May, 2012

Department of Mathematics

Copyright c� 2012 Alice Paul.

The author grants Harvey Mudd College the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copy-
ing is by permission of the author. To disseminate otherwise or to republish re-
quires written permission from the author.

Abstract

Terrorism threatens both international peace and security and is a national
concern. It is believed that terrorist organizations rely heavily on a few
key leaders and that destroying such an organization’s leadership is essen-
tial to reducing its influence. Martonosi et al. (2011) argues that increasing
the amount of communication through a key leader increases the likeli-
hood of detection. If we model a covert organization as a social network
where edges represent communication between members, we want to de-
termine the subset of members to remove that maximizes the amount of
communication through the key leader. A mixed-integer linear program
representing this problem is presented as well as a decomposition for this
optimization problem. As these approaches prove impractical for larger
graphs, often running out of memory, the last section focuses on structural
characteristics of vertices and subsets that increase communication. Future
work should develop these structural properties as well as heuristics for
solving this problem.

Contents

Abstract iii

Acknowledgments xi

1 Introduction 1

2 Literature Review 3
2.1 Previous Network Interdiction Research 3
2.2 A New Model . 4

3 Optimization Framework 7
3.1 Max-Flow Subproblems . 7
3.2 Choosing a Subset . 10
3.3 Implementation . 12

4 Decomposition 15
4.1 Bender’s Decomposition . 15
4.2 Delayed Column Generation 17
4.3 Application . 17
4.4 Implementation . 20

5 Structural Properties 21
5.1 Previous Results on Single-LOMAX 21
5.2 LOMAX . 22
5.3 Examining Cyclic Structures 26
5.4 Pairs of Vertices . 36

6 Conclusions and Future Work 43

Bibliography 45

List of Figures

5.1 An example of how a graph can be simplified by combining
vertices with a single edge-disjoint path to k 25

5.2 Examples of chordless cycles. 27
5.3 An example of a graph G that has a single cycle. 28
5.4 An example of a graph G with p parallel paths between k

and a vertex u. 30
5.5 An example of a graph G where k is in a single chordless

cycle C. 33
5.6 An example of calculating the number of edge-disjoint paths

between vertices in a graph G where k is in a single chordless
cycle C. 34

5.7 An example of a stack of cycles. 35
5.8 An example in which removing vertices in separate compo-

nents is not beneficial. 37
5.9 An example in which the list of cycles that contain u is a

subset of the cycles that contain v 38
5.10 An example in which all cycles with v and k contain u. . . . 38
5.11 An example in which removing {u, v} increases the number

of edge-disjoint paths between s and t that go through k, but
removing u or v alone does not. 39

List of Tables

3.1 Run times and results of the MIP representing LOMAX on
graphs with 20-30 vertices. 13

Acknowledgments

First, I would like to thank my advisor, Professor Susan Martonosi, for her
encouragement, insight, and advice throughout this project and my entire
career at Harvey Mudd College. Additionally, I would like to thank the
entire Harvey Mudd College Math Department for providing me with the
opportunities in the classroom and outside that helped me grow as a math-
ematician.

Lastly, I would like to thank my friends and family for their unending
and much appreciated support.

Chapter 1

Introduction

Terrorism threatens both international peace and security and has become
a national concern, especially after September 11, 2001. It is believed that
terrorist organizations rely heavily on a few key leaders and that destroy-
ing such an organization’s leadership is essential to disrupting its influ-
ence. However these leaders are difficult to detect by intelligence agencies
(Martonosi and Altner, 2009).

Terrorist organizations can be modeled as social networks where ver-
tices represent members of the organization and edges represent direct
communication between members. Terrorist leaders may choose to avoid
being involved in direct communication to evade detection. Martonosi
et al. (2011) argue that increasing the amount of communication through
a key vertex increases that member’s visibility to intelligence agencies. A
question emerges: Which vertices can be removed to increase the visibility
of leaders in a terrorist network?

In this paper, terrorist networks will be represented as graphs where
vertices represent members and edges represent communication between
members. The leader of the organization is marked as the key vertex k.
In the model used, the amount of communication in the network is inter-
preted as the total number of edge-disjoint paths between pairs of mem-
bers, not including k, since these paths represent possible independent
chains of communication. We are interested in the amount of communi-
cation k participates in, which can be measured by the number of paths
that must contain k. As argued in Martonosi et al. (2011), this metric can
be interpreted as the importance of k in maintaining communication in the
graph. The more important k is to maintaining communication, the more
edge-disjoint paths must pass through k.

2 Introduction

Removing members, or vertices, is one way of altering the communica-
tion flow in the network and possibly increasing k’s activity. To determine
the subset of vertices to remove that maximizes communication through
k, the problem is translated into a mixed-integer linear program where the
objective function represents the communication that must pass through k
and the optimal solution is the subset whose removal maximizes this com-
munication.

Since solving the mixed-integer program on even small graphs (30 ver-
tices or more) proved computationally intractable, a decomposition algo-
rithm was implemented to decrease the computational complexity. Then,
structural properties were investigated to determine necessary conditions
for subsets that increase k’s activity. This also helps reduce the complexity
of the problem by eliminating subsets from consideration and could prove
useful in a heuristic approach to the problem.

In Chapter 2, we review previous research on network disruption and
covert networks. Past work by Martonosi et al. (2011) presents a model-
ing framework for this problem upon which this paper will build. Then
in Chapter 3, we present the formulation of our mixed-integer linear pro-
gram and results. A decomposition of this formulation and results are dis-
cussed in Chapter 4. As the results show that the decomposition remains
impractical, Chapter 5 determines structural characteristics of subsets (and
vertices within these subsets) that increase communication through k. In
particular, we look at vertices within certain graph structures and pairs of
vertices. Future work should focus on these structural characteristics in or-
der to simplify the given problem and develop more practical algorithms.
Conclusions for this thesis and plans for future work are discussed in Chap-
ter 6.

Chapter 2

Literature Review

The goal of research in terrorist networks is to learn new ways of disrupting
these covert networks. In this chapter we will review previous literature on
network interdiction and a model of disruption that focuses on the commu-
nication through a key member of the network.

2.1 Previous Network Interdiction Research

Previous work involving network interdiction has focused on disconnect-
ing the network or increasing the length of the shortest path within a net-
work. This type of interdiction limits or destroys the flow of resources
within the graph and is useful for studying systems such as power grids,
the internet, and military operations (Royset and Wood, 2007; Martonosi
et al., 2011).

However, two main problems arise when applying these previous re-
sults to terrorist networks. First, in disrupting terrorist networks, we may
not have the resources necessary to disconnect the network. Instead, target-
ing a leader in the terrorist organization could have an equally disruptive
effect for lower cost and chance of detection Martonosi et al. (2011). Addi-
tionally, focusing on lengthening the longest path is not as applicable since
covert organizations tend to already communicate along long paths (Sage-
man, 2004).

Second, these models focus on graphs that exhibit a high clustering co-
efficient and an average path length around that of a random graph (Li
et al., 2005). Therefore, the vertices targeted for removal often are of high
degree and have a high amount of flow through them (Motter and Lai, 2002;
Martonosi et al., 2011). However, terrorist networks have exhibited a longer

4 Literature Review

average path length, which makes this work less applicable (Martonosi
et al., 2011).

Another area of research focuses on cascade-based attacks. Given a
network with capacities on the vertices, a cascade-based attack tries to re-
move some vertices in order to cause the failure of the largest subset of
vertices by increasing some value on the vertices beyond capacity (Motter
and Lai, 2002). Here, the capacity of vertices could be interpreted as a level
of communication over which we could detect that vertex. However, in our
problem we are trying to optimally remove vertices in order to increase the
communication through a single key vertex, which most likely has a lower
amount of communication. Thus, a cascade-based attack, which focuses on
the largest subset being detected, would most likely target other vertices,
making this approach irrelevant.

Instead, we want a network disruption model that accounts for the
unique structure of terrorist networks and focuses on increasing the com-
munication through a single vertex.

2.2 A New Model

Martonosi et al. (2011) have presented a new model for network interdic-
tion that focuses on a key vertex and the communication through that ver-
tex. We define a few metrics below as defined by Martonosi et al. (2011).

Consider an undirected graph G = (V, E) with key vertex k.

Definition 2.1. (Martonosi et al., 2011) Let zs,t(G) be the number of edge-disjoint
s � t paths in graph G. The flow capacity of graph G with respect to vertex

k is defined as
Zk(G) = Â

s,t2V\{k}
s 6=t

zs,t(G).

The flow capacity of G measures the total amount of flow or communi-
cation through the network that does not start or end at k.

In a max-flow problem with integer edge-capacities, unit values of flow
are pushed between s and t along paths between the two vertices. Since
each edge has capacity one, an edge can only be used once, and the max-
imum flow can be represented as edge-disjoint paths. Therefore, the total
communication can be computed as a sum of max-flow problems over all
pairs of vertices.

Since the objective is to detect the leader k, we want to increase the
amount of communication through that vertex. If our total communication

A New Model 5

is represented as the number of all-pairs s-t paths, then the amount of com-
munication k must participate in is the number of edge-disjoint paths that
must contain k. We call this the load of k

Definition 2.2. (Martonosi et al., 2011) The load of a vertex k in graph G is
defined as

Lk(G) = Zk(G)� Zk(G \ {k}).

That is, the load of k is the change in flow capacity after k is removed.
This measures how important vertex k is to maintaining the flow in the
graph. We can also measure how removing a subset of vertices affects the
load of k

Definition 2.3. (Martonosi et al., 2011) The load effect of subset S on key

vertex k is the change in the key vertex k’s load when the subset is removed

Ek(G, S) = Lk(G \ S)� Lk(G).

A positive load effect indicates the load of k will increase if subset S is
removed, which is desirable since it increases the amount of communica-
tion through k. Therefore, the problem becomes identifying the subset of
vertices with the greatest positive load effect.

There are two cases addressed in Martonosi et al. (2011). The Load Max-
imization Problem (LOMAX), which addresses finding the subset of vertices
with the maximum load effect, and the Single Vertex Deletion Load Maxi-
mization Problem (Single-LOMAX), a special case in which a single vertex is
removed. We address the previous results of Martonosi et al. (2011) in both
these areas in the sections following.

2.2.1 Single-LOMAX

Finding a single vertex that maximizes the load of k is a special case of LO-
MAX. As mentioned above, the load of k in a graph G can be computed
using a linear max-flow network problem (See Chapter 3 for details). Solv-
ing a max-flow problem takes polynomial time. Therefore, for every vertex
u in G, we can compute the load effect of u on k in polynomial time, and
we can determine the vertex with the highest load effect to remove in poly-
nomial time, as well.

Martonosi et al. (2011) observed empirically that for a key vertex that
exhibits the highest average betweenness, closeness, and degree centrality,
a vertex with positive load effect on the key vertex will almost always exist.
An example in which such a vertex does not exist is if the graph is a cycle on

6 Literature Review

n vertices or any graph where the key vertex is a leaf. However, the number
of vertices with a significant load effect is generally low since deleting a
vertex reduces the overall flow in the graph, and therefore the load of k, in
most cases.

The structural characteristics of vertices that have a positive load effect
on the key vertex are of interest since knowing these properties could help
find vertices more efficiently and possibly have extensions for LOMAX.

Martonosi et al. (2011) have proven several properties of vertices that
cannot have a positive load effect, discussed further in Chapter 5. These
results helped to create a heuristic algorithm that eliminates vertices that
break these conditions. The resulting algorithm has the potential to de-
crease the computation time for identifying positive load effect vertices.
Another algorithm using divide-and-conquer was also tested. However,
characterizing vertices that do increase the load remains to be considered
(see Chapter 5).

2.2.2 LOMAX

The Load Maximization Problem is computationally more difficult. Since
there are O(2n) possible subsets that we could consider, we can no longer
solve for the best subset using brute force in polynomial time.

Martonosi et al. (2011) argued that LOMAX could not be modeled as an
integer linear programming problem. Instead, they develop a genetic al-
gorithm on initial subsets of vertices. The weakness of a genetic algorithm
is that it is not guaranteed to reach an optimal or near-optimal solution.
This algorithm outperforms random search, but needs improvements to be
a viable option for solving this problem.

As shown in Chapter 3, it is possible to model LOMAX as a mixed-
integer linear program. However, this MIP is computationally intractable
for graphs with more than 30 vertices.

Chapter 3

Optimization Framework

The LOMAX problem tries to determine a subset of vertices whose removal
maximizes the load effect on a given vertex k. This can be rephrased as
determining the subset of vertices S that maximizes the load of k in G \ S,
where the load of k is the number of edge-disjoint s-t paths (s 6= t and
s, t 6= k) that must include k.

To formulate LOMAX as an optimization problem, we first formulate a
linear program to solve for the load of k in any graph G. We can do this by
looking at two max-flow subproblems.

3.1 Max-Flow Subproblems

The load of k in a graph G = (V, E) is the difference between two values of
Zk

Lk(G) = Zk(G)� Zk(G \ {k}) (3.1)

Each Zk is the number of edge-disjoint s-t paths over all pairs (s, t), s and t
not equal to k.

For each pair (s, t), the number of edge-disjoint paths is computed by
solving a max-flow problem between s and t where the edge capacities are
one. Given a pair (s, t), the max-flow optimization problem that computes
the number of edge-disjoint s-t paths over a set of vertices V and edges E
can be written as

8 Optimization Framework

Maximize vs,t
subject to

Â
j:(i,j)2E

xi,j,s,t � Â
k:(k,i)2E

xk,i,s,t =

8
><

>:

vs,t if i = s
�vs,t if i = t
0 otherwise

for all i 2 V

xi,j,s,t 1 for all (i, j) 2 E

vs,t � 0
xi,j,s,t � 0 for all (i, j) 2 E.

(3.2)

Computing the number of paths between different s-t pairs can be done
independently. Therefore, we can create an optimization program that
computes all s-t pair paths in a single maximization problem. Let V�k be
the set of vertices without k. Then our all-pairs max-flow program on a
graph G = (V, E) can be written as

Maximize Â
s,t2V�k

s 6=t

vs,t

subject to

Â
j:(i,j)2E

xi,j,s,t � Â
k:(k,i)2E

xk,i,s,t =

8
><

>:

vs,t if i = s
�vs,t if i = t
0 otherwise

for all i 2 V for all s, t 2 V�k

xi,j,s,t 1 for all (i, j) 2 E for all s, t 2 V�k

vs,t � 0 for all s, t 2 V�k
xi,j,s,t � 0 for all (i, j) 2 E for all s, t 2 V�k.

(3.3)

The optimal solution to this program has an objective function value
equal to Zk(G).

Recall that the load of k is Lk(G) = Zk(G) � Zk(G \ {k}). Therefore,
we ultimately wish to choose subset S to maximize Zk(G \ S)� Zk(G \ (S [
{k}).

Max-Flow Subproblems 9

If we have an optimization program maximizing an objective function
cTx, then it is minimizing �cTx. This creates a problem because we cannot
combine the two all-pairs max-flow problems for Zk(G) and Zk(G \ {k})
into a single maximization program. Israeli and Wood (2002) present a
solution to this problem. If we are maximizing the difference between two
maximization problems, then we can take the dual of the second problem,
which converts the problem into a minimization problem.

Given an optimization program,

Maximize cTx
subject to

Ax b
x � 0

(3.4)

the dual of (3.4) is

Minimize bTy
subject to

ATy � c
y � 0.

(3.5)

By the strong duality theorem, if an optimization problem has a finite
optimal solution, the dual of that problem has the same finite optimal ob-
jective function value. Thus, we can use the dual of our program without
changing the optimal objective function value.

Therefore, to compute Zk(G \ {k}), we can take the dual of Equation 3.3
with regards to G0 = G \ {k} = (V 0, E0). The dual is written as

Minimize Â
s,t2V0

s 6=t

Â
(i,j)2E0

yi,j,s,t

subject to
yi,s,t � yj,s,t + yi,j,s,t � 0 for all (i, j) 2 E0 for all s, t 2 V 0

�ys,s,t + yt,s,t � 1 for all s, t 2 V 0

yi,j,st � 0 for all (i, j) 2 E0 for all s, t 2 V 0

yi,s,t unrestricted for all i, s, t 2 V 0.

(3.6)

The dual of a max-flow problem is called a min-cut problem. We can
interpret the dual variables yi,s,t as node potentials. For every edge (i, j), if
yi,s,t < yj,s,t, or node i has lower potential than node j, then yi,j,s,t > 0 and is
counted in our objective function.

10 Optimization Framework

Thus, if we want to compute the load of k equal to Zk(G)� Zk(G \ {k}),
we can use the following optimization program

Maximize Â
s,t2V�k

s 6=t

vs,t � Â
s,t2V0

s 6=t

Â
(i,j)2E0

yi,j,s,t

subject to

Â
j:(i,j)2E

xi,j,s,t � Â
k:(k,i)2E

xk,i,s,t =

8
><

>:

vs,t if i = s
�vs,t if i = t
0 otherwise

for all i 2 V for all s, t 2 V�k

xi,j,s,t 1 for all (i, j) 2 E for all s, t 2 V�k
yi,s,t � yj,s,t + yi,j,s,t � 0 for all (i, j) 2 E0 for all s, t 2 V 0

�ys,s,t + yt,s,t � 1 for all s, t 2 V 0

vs,t � 0 for all s, t 2 V�k
xi,j,s,t � 0 for all (i, j) 2 E for all s, t 2 V�k
yi,j,st � 0 for all (i, j) 2 E0 for all s, t 2 V 0

yi,s,t unrestricted for all i, s, t 2 V 0.
(3.7)

Now that we have a linear program for the load of k in G, we can use
this to find the load of k in G \ S. To do this, we will add some new variables
to represent our subset and the effect removing the subset has on the graph.

3.2 Choosing a Subset

Let’s return to LOMAX, where we want to find a subset of vertices that
maximizes the load of k. If we let S represent the subset of vertices to re-
move from the graph, we want to maximize the objective function

Lk(G \ S) = Zk(G \ S)� Zk(G \ (S [{k})). (3.8)

As shown above, if we know G \ S, then we can use the optimization
program in Equation 3.7 to solve for the load of k. Therefore, we want some
method of altering G as we choose our subset that reflects our choice.

We can formalize this by creating variables zi for each vertex i where
zi = 0 if zi is in our subset and zi = 1 if not. Consider the subproblem
in Equation 3.3, which computes Zk(G). In our problem, the capacity of

Choosing a Subset 11

each present edge is one. Therefore, to account for our subset we create a
variable wi,j, representing the new capacity of edge (i, j) in Equation 3.3,
where

wi,j � 0
wi,j zi
wi,j zj
wi,j � zi + zj � 1.

(3.9)

If the edge (i, j) is interrupted (meaning zi or zj is in the subset), then
wi,j will be 0, and we cannot have any flow along that edge. If zi and zj are
not in our subset, then wi,j � 1 and wi,j 1. Thus, wi,j = 1 and we can let
wi,j be the capacity on the edge (i, j), essentially allowing us to delete edges
as we add vertices to our subset. The constraint

xi,j,s,t 1

in (3.7) is now written as
xi,j,s,t wi,j.

For the subproblem in Equation 3.6 we want the wi,j to take on a slightly
different meaning. As mentioned above, the dual variables can be inter-
preted as node potentials. If an edge (i, j) does not exist, or the nodes are
at the same potential, then yi,j,s,t = 0 and is not counted in our objective
function.

Thus, we can substitute the constraint

yi,s,t � yj,s,t + yi,j,s,t � 0

with a similar constraint that represents this relationship,

yi,s,t � yj,s,t + yi,j,s,t � �M(1 � wi,j).

M is an arbitrarily large constant. If zi or zj is in our subset, then wi,j = 0,
and yi,j,s,t can be set to zero regardless of the values of yi,s,t and yj,s,t, and it
essentially does not exist. Otherwise, if wi,j = 1, the constraint reverts to
the original.

Introducing the variables zi and wi,j and the modifications on our load
constraints, we can now write the full mixed-integer linear program. Given
a graph G = (V, E), a key vertex k, and a maximum number of vertices that
can be removed m, the following mixed-integer linear program determines
the maximum load of k.

12 Optimization Framework

The objective function is the load of k in a graph G \ S, and the optimal
solution reveals which subset S gives this result.

Maximize Â
s,t2V�k

s 6=t

vs,t � Â
s,t2V0

s 6=t

Â
(i,j)2E0

yi,j,s,t

subject to
Â
i2V

zi � n � m

zk = 1
wi,j � 0
wi,j zi
wi,j zj
wi,j � zi + zj � 1

Â
j:(i,j)2E

xi,j,s,t � Â
k:(k,i)2E

xk,i,s,t =

8
><

>:

vs,t if i = s
�vs,t if i = t
0 otherwise

for all i 2 V for all s, t 2 V�k

xi,j,s,t wi,j for all (i, j) 2 E for all s, t 2 V�k
yi,s,t � yj,s,t + yi,j,s,t � �M(1 � wi,j) for all (i, j) 2 E0

for all s, t 2 V 0

�ys,s,t + yt,s,t � 1 for all s, t 2 V 0

zi binary
wi,j � 0
vs,t � 0 for all s, t 2 V�k
xi,j,s,t � 0 for all (i, j) 2 E for all s, t 2 V�k
yi,j,st � 0 for all (i, j) 2 E0 for all s, t 2 V 0

yi,s,t unrestricted for all i, s, t 2 V 0

(3.10)

3.3 Implementation

This formulation was translated into AMPL, a language for modeling op-
timization problems. Random graphs were created using an Erdős-Rényi
graph generator in Python (in Erdős-Rényi graphs every possible edge oc-
curs independently with probability p) that takes in a number of vertices

Implementation 13

Matrix n |E| Run Time (s) Subset Max Load Init Load
Matrix20a 20 48 6.75 {1, 7, 8, 19} 62 38
Matrix20b 20 30 0.23 {1, 2, 7, 11, 18} 67 67
Matrix25a 25 64 45.35 {3, 11, 14, 15} 101 23
Matrix25b 25 66 188.71 {8, 14, 21, 22} 96 64
Matrix30a 30 68 65.63 {0, 5, 22, 25} 153 112
Matrix30b 30 82 378.05 Ran out of memory

Table 3.1 Run times and results of the MIP representing LOMAX on graphs
with 20-30 vertices. The first column, Matrix, contains the filename for the graph
in matrix format while the second and third columns contain the size of the vertex
and edge set, respectively. Run Time (s) represents the total time taken to run
the MIP in CPLEX and return a solution, while the optimal solution and objective
function value are contained in the next two columns, Subset and Max Load.
Lastly, the initial load of k in G is included in the column labeled Init Load for
reference.

and the probability p. A weighted random number generator is used to
determine which edges exist.

The initial graphs tested used a probability of 0.5 for each edge. These
tests were done to find the best single vertex to remove on graphs of size
6, 7, 8, 9, 10, 12, 13, and 15 (three tests done on those with � 10 vertices).
The results matched those of the brute force algorithm. These same test
graphs were also tested with m = n � 1 to find the best subset to remove,
although often the best subset was a single vertex. The results were com-
pared against those calculated by brute force (calculating the load of every
possible subset).

For graphs with more than 15 vertices, the mixed-integer program be-
came more difficult to test since running it would often crash. One test on
15 vertices and one on 16 vertices returned results. These were matched
against the output of the genetic algorithm. In the first case, the two had
equal results. In the second case, the optimization program returned a sub-
set with a greater load effect than the genetic algorithm.

When the probability of edges is reduced to 0.1 test results came back
for graphs with up to 30 vertices, but no larger. All tests that returned
results took less than 4 minutes. k was chosen randomly amongst vertices
having at least two neighbors. Results are shown in Table 3.1.

More tests than those indicated were done but not recorded when test-
ing the model. However, the run times were similar. Although the subsets
contain 4 or more vertices, at least one vertex in each subset is not con-
nected to k. One thing that is notable is that the maximum load signifi-

14 Optimization Framework

cantly increases when these subsets are removed. This indicates that the
payoff for identifying a maximal subset is potentially large.

Matrix30b was the first graph with p = 0.1 to cause memory issues,
and it was found that no other generated graph with 30 vertices generated
results unless the resulting subset was empty. These generated graphs all
had greater than 75 edges whereas Matrix30a, which returned an optimal
subset, had only 68 edges, indicating that the number of edges influences
the computational complexity.

Since the MIP framework appeared to be too computationally difficult
to be practical, we needed to approach solving the model in a new way. In
Chapter 4, we explain how the mixed-integer linear program was decom-
posed using Bender’s decomposition. Additionally, Chapter 5 discusses
properties of vertices in subsets with a positive load effect.

Chapter 4

Decomposition

Because the number of constraints grows on the order of O(mn2), where
n = |V| and m = |E|, we determined that we should use a decomposition
algorithm to solve our problem for a given graph G. Bender’s decomposi-
tion is an efficient decomposition algorithm for problems that have a small
integer master problem and a large linear subproblem that is guaranteed to
be feasible (Bertsimas and Tsitsiklis, 1997). In our case, the integer master
problem is choosing the subset of vertices to remove. This problem has rel-
atively few constraints. If the subset is fixed, we are left with a large linear
network flow subproblem that is guaranteed to be integer and is relatively
easy to solve by the simplex algorithm.

4.1 Bender’s Decomposition

Bender’s decomposition uses duality and delayed constraint generation to
efficiently solve large mixed-integer linear programs. Consider a mixed-
integer linear program

Maximize cTx + fTy
subject to

Ax = b
Bx + Dy = d

x int � 0
y � 0.

(4.1)

Notice that the two variable vectors x and y exist in coupled constraints,
constraints in which both x and y are present. That is, we cannot separate
the constraints into those containing x and those not containing x.

16 Decomposition

Given a fixed x⇤, the linear subproblem becomes

Maximize fTy
subject to

Dy = d � Bx⇤

y � 0

(4.2)

with dual

Minimize (d � Bx⇤)Tp
subject to

DTp f
p unrestricted.

(4.3)

Suppose the dual minimizes over the polyhedron P = {p|pTD fT},
where P has I extreme points. Then we denote the extreme points pi where
i = 1, 2, . . . I. Furthermore, let wj where j = 1, 2, . . . J be the extreme rays of
P. If the primal subproblem is feasible, by the strong duality theorem, the
dual cannot be unbounded. Thus, for x to be feasible, we need (wj)T(d �
Bx) � 0. Otherwise, an extreme ray would be an improving direction, and
our dual would be unbounded.

Furthermore, the optimal objective function of the subproblem has to
be greater than or equal to the objective function at all extreme points. In
other words, (pi)T(d � Bx) � z for all i where z represents the optimal
objective function of the primal subproblem.

Therefore, we can reformulate the master problem in Equation 4.1 to be

Maximize cTx + z
subject to

Ax = b
(pi)T(d � Bx) � z for all i
(wj)T(d � Bx) � 0 for all j

x int � 0
z � 0.

(4.4)

Although we have reduced the number of variables, the number of con-
straints is extremely large. Therefore, we can use delayed constraint gener-
ation to improve the efficiency of this algorithm.

Delayed Column Generation 17

4.2 Delayed Column Generation

In delayed constraint generation the master problem in Equation 4.4 begins
in the form

Maximize cTx + z
subject to

Ax = b
x int � 0

z � 0

(4.5)

with no upper bound on what z can be.
Given a feasible solution to this problem x⇤, z⇤ we then solve the dual

of the linear subproblem Equation 4.3 with x⇤ substituted in. If the dual is
unbounded, then we have identified an extreme ray wj whose constraint is
violated. Therefore, we add in the constraint

(wj)(d � Bx) � 0.

If the dual returns a finite optimal solution pi with objective function less
than z⇤, then we must add in the constraint

(pi)(d � Bx) � z.

Otherwise all constraints have been satisfied, and we have reached the op-
timal solution.

4.3 Application

We now apply Bender’s Decomposition to our mixed-integer linear pro-
gram in Equation 3.10. In this case we have coupled constraints with our
wi,j, xi,j,s,t, yi,j,s,t and yi,s,t variables. We let the zi’s and wi,j’s be the vari-
ables in our master problem. Our initial master problem contains only the
constraints related to the wi,j’s and zi’s, representing the choice of subset to
remove. Thus the master problem is

18 Decomposition

Maximize Lk
subject to

Âi2V zi � n � m
zk = 1
wi,j � 0
wi,j zi
wi,j zj
wi,j � zi + zj � 1

zi binary
wi,j � 0
Lk � 0.

(4.6)

Here, Lk represents the optimal load of k. It currently has no restrictions
on its value.

Solving Equation 4.6 determines a feasible z and w, which we can use
to compute the load of k in the dual of the linear subproblem. When taking
the dual we let x0

i,s,t be the dual variables corresponding to the flow balance
constraints of the xi,j,s,t’s and x0

i,j,s,t be the dual variables corresponding to
the capacity constraints on the xi,j,s,t’s. Similarly, we let y0

i,j,s,t be the dual
variables corresponding to the edge constraints on yi,j,s,t and y0

i,j,s,t be the
dual variables corresponding to the constraints on the relationship between
ys,s,t and yt,s,t. The linear subproblem becomes

Application 19

Minimize Â
s,t2V�k

s 6=t

Â
(i,j)2E

wi,jx
0
i,j,s,t + Â

s,t2V0

s 6=t

y
0
s,t � Â

s,t2V0

s 6=t

Â
(i,j)2E0

M(1 � wi,j)y
0
i,j,s,t

subject to
x0

i,s,t � x0
j,s,t + x0

i,j,s,t � 0 for all (i, j) 2 E for all s, t 2 V�k

�x0
s,s,t + x0

t,s,t � 1 for all s, t 2 V�k

Â
j:(i,j)2E0

y
0
i,j,s,t � Â

k:(k,i)2E0
y
0
k,i,s,t =

8
><

>:

y0
s,t if i = s

�y0
s,t if i = t

0 otherwise
for all i, s, t 2 V 0

y0
i,j,s,t � �1 for all (i, j) 2 E0 for all s, t 2 V 0

x0
i,j,s,t � 0 for all (i, j) 2 E for all s, t 2 V�k

x0
i,s,t unrestricted for all i, s, t 2 V�k

y0
s,t 0 for all s, t 2 V 0

y0
i,j,s,t 0 for all (i, j) 2 E0 for all s, t 2 V 0.

(4.7)
An AMPL script file was written to perform Bender’s decomposition

on the problem for a given graph. At the beginning of each iteration c,
the master is solved and we obtain the optimal zi’s and wi,j’s. Initially, we
start with an infinite objective function and all zi = 1. The dual of the
linear subproblem, shown in Equation 4.7, is then solved with the wi,j’s
substituted in.

If the subproblem is unbounded, AMPL returns the extreme ray, defin-
ing x

0
c and y

0
c, and we add in the constraint

Â
s,t2V�k

s 6=t

Â
(i,j)2E

wi,jx
0
i,j,s,t,c + Â

s,t2V0

s 6=t

y
0
s,t,c � Â

s,t2V0

s 6=t

Â
(i,j)2E0

M(1 � wi,j)y
0
i,j,s,t,c � 0.

If the subproblem has an objective function value less than or equal to
the current MaxFlowEffect, then we add in the constraint

Â
s,t2V�k

s 6=t

Â
(i,j)2E

wi,jx
0
i,j,s,t,c + Â

s,t2V0

s 6=t

y
0
s,t,c � Â

s,t2V0

s 6=t

Â
(i,j)2E0

M(1 � wi,j)y
0
i,j,s,t,c � Lk.

Otherwise, the algorithm terminates.

20 Decomposition

4.4 Implementation

The decomposition algorithm was fully implemented and tested for small
graphs of 15 vertices and returned the same optimal subsets as the MIP.
The algorithm was then tested on graphs having between 20 and 35 ver-
tices. It was found that when the algorithm encountered a graph that con-
tained no vertex subsets with a positive load effect, the algorithm termi-
nated within a second. However, when identifying a subset having posi-
tive load effect, the algorithm would run out of memory after completing
around 4,000 iterations of Simplex. The total time the algorithm ran before
running out of memory varied but was approximately three days.

After performing simplex on the subproblem (which is quite large) we
store the values of variables to create the next cut. With each iteration,
the amount of memory used increased linearly, which indicates that this
process is what causes the memory to run out.

Research into different methods for fixing this problem did not yield
any solutions. Therefore, Bender’s Decomposition does not yield a practi-
cal method for solving our given model. This gives motivation for identify-
ing properties of vertices in subsets with a positive load effect. Identifying
such properties helps to eliminate potential subsets from consideration and
reduces the complexity of the problem. This is discussed in Chapter 5.

Chapter 5

Structural Properties

Given that our model and decomposition algorithm for LOMAX proved
impractical for graphs with more than 30 nodes, there remains work to be
done to understand which subset to remove. Understanding the structural
properties of vertices within subsets with a positive load effect on k can help
give us insight. In particular, identifying necessary conditions for these
vertices allows us to eliminate candidates and reduce the complexity of
the LOMAX problem. This could be useful both for our model and future
heuristics.

5.1 Previous Results on Single-LOMAX

Martonosi et al. (2011) prove four theorems about single vertex subsets that
cannot improve the load of k. These are presented below and will prove
useful when looking at larger subsets.

Theorem 5.1. (Martonosi et al., 2011) Given a graph G with a key vertex k of
degree two, removing any vertex i adjacent to vertex k will not increase the load of
k.

Theorem 5.2. (Martonosi et al., 2011) Let G be a chordless n-cycle. Then for any
choice of key vertex k in G, the load of k cannot by increased by removing another
vertex.

Theorem 5.3. (Martonosi et al., 2011) Let k and i be distinct vertices in graph G.
If there is only one edge-disjoint path between k and i, then Ek(G, {i}) 0.

Theorem 5.4. (Martonosi et al., 2011) Let k and i be distinct vertices in graph G.
Consider an edge cut C that partitions G into two components such that i and k

22 Structural Properties

are in separate components. Let Gk be the subgraph of G over the set of vertices in
the component containing k, and let Gi be the subgraph of G over the set of vertices
in the component containing i. Let i1, . . . ip, where p |C|, be the set of vertices
on the i side of the cut that are adjacent to Gk. Let k1, . . . ks, where s |C|, be
the set of vertices on the k side of the cut adjacent to Gi. Suppose any boundary
vertex i1 2 Gi has at least b|C|/2c edge-disjoint paths to every other boundary
vertex in Gi by using only vertices in Gi \ {i}, and any boundary vertex k1 2 Gi
has at least b|C|/2c edge-disjoint paths to every other boundary vertex in Gk by
using only vertices in Gk \ {k}. Then the load effect on k by removing vertex i is
non-positive.

5.2 LOMAX

We first work to extend these results for any size subset. Theorem 5.1 and
Theorem 5.3 can be extended naturally. (Note that Theorem 5.2 already
eliminates any size subset from consideration.) We also add in a theorem
about vertices that are not in a cycle with k.

Theorem 5.5. Given a graph G with key vertex k having degree two, any vertex
subset containing i adjacent to vertex k will not increase the load of k.

Proof. By removing vertex i adjacent to k, k becomes a leaf and has load
0, regardless of what other vertices we choose for our subset. Since load
is always non-negative, a load of k of 0 after removing i can be no greater
than the load of k in the original graph.

Theorem 5.6. Let G be a graph with key vertex k and let i be a vertex with a
single edge-disjoint path to k. Let S be any vertex subset containing i, and let
T = S \ {i}. Then, Lk(G \ S) Lk(G \ T). Therefore, any subset T that
excludes i will have at least as large a load effect on k as T [{i}.

Proof. Let G be a graph with key vertex k and let i be a vertex with a single
edge-disjoint path to k. Consider a subset S containing i. Let T = S \ {i}.
We first note that in G \ T, i can have at most one edge-disjoint path to k.
Otherwise, an alternate path would have existed in G, contradicting our
statement about i. Suppose i does not have a path to k, then i has no effect
on the load of k when we add it to T, and Lk(G \ S) = Lk(G \ T).

Otherwise, i has exactly one edge-disjoint path to k. By Theorem 5.3, i
cannot have a positive load effect on k in G \ T. Thus, Lk(G \ S) Lk(G \
T). Any subset will have a greater or equal load effect on k without i, as
desired.

LOMAX 23

Theorem 5.7. Let G be a graph with key vertex k and let i be a vertex with a
single vertex-disjoint path to k. Let S be any vertex subset containing i, and let
T = S \ {i}. Then, Lk(G \ S) Lk(G \ T). Therefore, any subset T that
excludes i will have at least as large a load effect on k as T [{i}.

Proof. Let G be a graph with key vertex k and let i be a vertex with a single
vertex-disjoint path to k. Consider a subset S containing i. Let T = S \ {i}.
We first note that in G \ T, i either has a single edge-disjoint path to k or
more than one edge-disjoint path to k but a single vertex-disjoint path to k.

If i has a single edge-disjoint path, by Theorem 5.6, Lk(G \ S) Lk(G \
T).

Otherwise, i has more than one edge-disjoint path to k but a single
vertex-disjoint path to k. Since i only has a single vertex-disjoint path to
k, it is not in a cycle with k. Thus, there is some vertex v through which
every edge-disjoint path between i and k must pass. Let Vi be the vertices
in i’s component in G \ {v} and let Vk be the vertices in k’s component of
G \ {v}.

The paths between vertices in vi do not contribute to the load of k. This
is because any edge-disjoint path that contains k must cross back from Vk
into Vi through v and we can restrict ourselves to paths that only use v and
vertices in Vi.

Thus, when i is removed, we need to look at its effect on the edge-
disjoint paths between vertices in Vi and Vk. Without i, the flow in Vi is
affected. However, once a path reaches v, it can take the same path as pre-
viously. Thus, we cannot possibly force more edge-disjoint paths through
k and Lk(G \ S) Lk(G \ T), as desired.

These theorems show that we can ignore vertices adjacent to k if k has
degree two and ignore all vertices with a single edge-disjoint path to k or
have no cycle with k. Based on these results we can perform some simplifi-
cations to our graph.

5.2.1 Simplifying the Graph

Since vertices with one edge-disjoint path to k cannot increase the load ef-
fect on k of any subset, we can simplify the graph. For each vertex u with
one edge-disjoint path to k, if its neighbor v also has one edge-disjoint path
to k, we can combine these vertices into a single vertex. To do this we let
v remain in the graph. If u has a neighbor w that is not adjacent to v, then

24 Structural Properties

we add an edge between v and w. Thus, any vertex adjacent to u or v origi-
nally will be adjacent to v. An example of this is the combination of vertices
3 and 4 in Figure 5.1.

Additionally, if we have a vertex v with more than one edge-disjoint
path to k and with at least two neighbors u1, u2, . . . us that a have a single
edge-disjoint path to k, we can combine v’s neighbors into a single vertex u.
This is different from the case above. In the first case, we were combining
vertices whose single edge-disjoint path must pass through a common edge
adjacent to v. Now, we are combining vertices whose single edge-disjoint
path must pass through v. An example of this is the combination of vertices
8, 9, and 10 in Figure 5.1.

To account for this simplification process, we need to associate a weight
function to each vertex. Every vertex starts with a weight of one. Whenever
we combine vertices we add the weights of those vertices together to get
the weight of the new combined vertex. When calculating the number of
edge-disjoint paths between any pair of vertices u and v in the graph, we
multiply the number of paths by the product of the weights of the vertices.

If both u and v have more than one edge-disjoint path to k, this does
not affect anything. For example, in Figure 5.1, the number of edge-disjoint
paths between vertex 2 and vertex 6 is multiplied by one. Otherwise, if v is
a combined vertex then there is a single edge-disjoint path between the pair
(since we only combine vertices with a single edge-disjoint path to k and
any combined vertex has a single neighbor). Furthermore, u could only
have one edge-disjoint path to any vertex combined into v so multiplying
by the weight accounts for these extra paths. For example, in Figure 5.1, the
number of edge-disjoint paths between vertex 2 and vertex 8 is multiplied
by 3, representing the single edge-disjoint paths vertex 2 had to 8, 9, and
10.

The whole simplification process is given below.

Simplification Process

Input: G = (V, E), where V = (v1, v2, . . . vn), and k.
For vi where vi 6= k:

1. If vi has a single edge-disjoint path to k,

(a) Let S be the subset of vertices with a single edge-disjoint path to
k adjacent to vi.

(b) For each vertex s 2 S, let Ns be the neighbors of s. Make vi
adjacent to every vertex in Ns.

LOMAX 25

Figure 5.1 An example of a graph (left) and its simplified version (right) with
vertex weights. Vertices 8, 9 and 10 have been combined together into vertex
with weight three. Additionally, vertices 3 and 4 have been combined together
into vertex 4 with weight two.

(c) Delete S and add |S| to the weight of vi.

2. If vi has � 2 edge-disjoint paths to k,

(a) Let S be the subset of vertices with a single edge-disjoint path to
k adjacent to vi.

(b) Pick one vertex u in S. Let T = S \ {u}.
(c) For each vertex t 2 T, let Nt be the neighbors of t. Make u adja-

cent to every vertex in Nt.
(d) Delete T and add |T| to the weight of u.

Figure 5.1 shows an example of this simplification process. Note that
vertices 8, 9 and 10 have been combined together into a vertex with weight
three. Additionally, vertices 3 and 4 have been combined together with
weight two. At the end of this process every vertex with more than one
edge-disjoint path to k will have at most one neighbor with a single edge-
disjoint path to k.

As argued above, the number of edge-disjoint paths between vertices
that have not been combined together are still counted when we multiply
the weight functions of s and t. For example, in Figure 5.1, we count 6 paths
between vertex 8 and vertex 4, accounting for all the paths between vertices
3 and 4 and vertices 8, 9, and 10.

26 Structural Properties

However, some paths between vertices that have been combined to-
gether are no longer counted. For example, the path between vertex 8 and
9 in Figure 5.1 is no longer counted in the load of k. Luckily, we never want
to remove a vertex v that disconnects any of our combined vertices from k
since v’s removal would only decrease the load of k. Therefore, these edge-
disjoint paths between vertices will still exist when we remove an optimal
subset and their effect on the load of k is a constant. Thus, our optimization
problem still finds an optimal subset to remove on the simplified graph that
is optimal in the original graph.

5.3 Examining Cyclic Structures

Removing a vertex affects the load on a key vertex when it disconnects
some cycles, changing where flow can travel. Therefore, we are primarily
interested in how the cyclic structure of the graph changes when we re-
move our subset. Below, we analyze some simple cyclic structures and de-
termine which vertices we should consider removing. These demonstrate
how knowing information about the cycles k is in can make calculating the
load effect of vertices much easier.

A cycle can be represented as the vertices within that cycle. In this sec-
tion, we define a chordless cycle to be a cycle that does not contain a smaller
cycle. For an example, see the black, green, red, and orange cycles in Fig-
ure 5.2. We consider a vertex v to be in a single chordless cycle if v has two
neighbors u and w such that any chordless cycle containing v contains u
and w. For example, vertex 2 in Figure 5.2 is in a single chordless cycle, but
vertex 1 is not.

In order to determine if we should remove a vertex we look at a couple
of specific cases. These cases will be defined based on the cyclic structure
of the graph. First, we analyze a graph with a single cycle. Next, we ex-
amine cycles in parallel (defined in Section 5.3.2) and when k is in a single
chordless cycle (defined above). Restricting ourselves to these specific cases
allows us to determine which vertices we should include in our subset.

Let D(v) be the number of vertices disconnected from k when vertex
v is removed. We also define a metric E(v). If v has an adjacent vertex u
with one edge-disjoint path to k, then E(v) is the weight of u. Otherwise,
E(v) = 0. Similarly, E(S), where S = {s1, s2, . . . sr} is a subset of vertices, is
E(s1) + E(s2) + · · ·+ E(sr).

Note that E(k) is the number of vertices with a single edge-disjoint path
to k such that the path does not contain any vertices with more than one

Examining Cyclic Structures 27

Figure 5.2 Examples of chordless cycles. On the left, Cycle 1 (red), 2 (green),
and 3 (black) are all chordless cycles. The black cycle does not contain either
the red or green cycle because it does not contain vertex 5. On the right, Cycle
4 (blue) is an example of a cycle that is not chordless since it contains Cycle 5
(orange).

edge-disjoint path to k. Since we assumed that the graph is simplified, if
E(k) > 0, there is exactly one vertex w adjacent to k with weight E(k) (we
will use w to denote this vertex throughout this section). For simplicity, we
will assume w exists (if w does not, then E(k) = 0 and it will not affect
our calculations). This value is important because w has a single edge-
disjoint path to every other vertex in the graph that must pass through k
and contributes to the load of k.

5.3.1 Single Cycles

Theorem 5.8. Suppose a graph G = (V, E) has a single cycle of length l + 1 con-
taining k. Let n = |V|. We label the vertices around the cycle k, v1, v2 . . . vl. Fur-
thermore, let I = {v1, v2, . . . vI}. Then, by definition, E(I) = E(v1) + E(v2) +
· · ·+ E(vi). Then, the load effect of vertex vi is

�E(k)(D(vi)) + (E(I � 1) + i � 1)(l � i + E(L)� E(I))�
✓

l
2

◆
.

See Figure 5.3 for an example where l = 4, E(k) = 3, E(v1) = 2, E(v3) =
1, and E(I) = 3.

Proof. In this graph, each pair of vertices in our cycle has 2 edge-disjoint
paths between them. After k is removed, these pairs have a single path be-
tween them. Thus, these pairs contribute (l

2) to the load of k. Additionally,

28 Structural Properties

Figure 5.3 An example of a graph G that has a single cycle of length l + 1 = 5
containing k. Here E(k) = 3, E(v1) = 2, and E(v3) = 1.

any vertex with a single edge-disjoint path to k adjacent to some vertex vi
in our cycle (of which there are E(k)) has exactly one path to any other ver-
tex in the cycle or adjacent to some vj regardless of whether k exists in the
graph. Therefore, these pairs do not contribute to the load of k.

Lastly, w has a single edge-disjoint path to any other vertex that must
pass through k. Let m = n � 2, which is the number of vertices in our cycle
or adjacent to some vi on the cycle (we subtract off k and w). Therefore, the
initial load of k is

E(k)m +

✓
l
2

◆
.

For example, in Figure 5.3, E(k) = 3, m = 6, and l = 4. Thus, the load
of k is 3 · 7 + (4

2) = 33.
Consider a vertex vi. After we remove vertex vi, all vertices in the graph

have a single edge-disjoint path between them. Furthermore, D(vi) vertices
are now disconnected from k. Therefore, we have E(k)(m � D(vi)) paths
from w to all other vertices that contribute to the load of k. Additionally, we
have single edge-disjoint paths through k for each pair of vertices on either
component off k formed when we remove vi. There are

E(I � 1) + i � 1

vertices in one component off k and l � i + E(L)� E(I) vertices in the other

Examining Cyclic Structures 29

component. This contributes to

(E(I � 1) + i � 1)(l � i + E(L)� E(I))

paths. Thus, the load of k is now

(E(I � 1) + i)(l � i + E(L)� E(I)) + E(k)(m � D(vi))

For example, in Figure 5.3, if we were to remove v2, We would have
i � 1 = 1 vertices previously on the cycle plus E(i � 1) = E({v1}) = 2
vertices that are adjacent to a vi on one component off k, and we have l � i =
2 vertices previously on the cycle plus

E(L)� E(I) = E({v1, v2, v3, v4})� E({v1, v2}) = 3 � 2 = 1

vertices that are adjacent to a vi on the other component off k. Furthermore,
m � D(v2) = 7 � 1 = 6 and E(k) = 3. Thus, the load of k when we remove
v2 is 2 · 3 + 6 · 3 = 24.

Thus, the load effect of vi is

�E(k)(D(vi)) + (E(I � 1) + i � 1)(l � i + E(L)� E(I))�
✓

l
2

◆
.

We only want to remove vi if its load effect on k is positive. Therefore,
we need

�E(k)(D(vi)) + (E(I � 1) + i � 1)(l � i + E(L)� E(I))�
✓

l
2

◆
> 0.

Furthermore, since we never want to remove vertices with a single
edge-disjoint path to k and removing any vertex in the cycle breaks all cy-
cles in the graph, any subset of vertices with positive load effect on k has
size 1. Therefore, if the above value is 0, we can mark vi as ignorable.

5.3.2 Parallel Cycles

Theorem 5.9. Suppose a graph G has p vertex-disjoint paths from k to a vertex u
(forming (p

2) parallel cycles). Suppose all vertices not in these paths have a single
path to k. We label the vertices along the ith path of length li to be vi,1, vi,2, . . . vi,li .

30 Structural Properties

Figure 5.4 An example of a graph G that has p = 3 parallel paths from k to a
vertex u.

Let m = n � E(k)� 1 and let mc be the number of vertices in the p paths between
k and u. Then, the load effect of vi,j is

�E(k)D(vi,j)�
1
2
(l2

i + li � 2mcli) + (j � 1 + E(Pi,j)(m � E(Pi,j�1)� j + 1),

and the load effect of u is

(Â
i<j

(E(Pi) + li)(E(Pj) + lj)) + E(k)(m � 1 � E(u))� E(k)m �
✓

mc

2

◆
.

An example is shown in Figure 5.4 where p = 3.

Proof. Let Pi = {vi,1, vi,2, . . . vi,li}. Similarly, we let Pi,j = {vi,1, vi,2, . . . vi,j}
(Pi,j is the set of the first j vertices in Pi).

Every pair of vertices on our parallel paths has two edge-disjoint paths
between them. After k is removed, these pairs have a single path between
them. Any vertex with a single edge-disjoint path to k that is attached to a
vi,j has exactly one path to any other vi,j or vertex adjacent to a vi,j regardless
of whether k exists. Lastly, w has one edge-disjoint path to every vertex in
the cycle that must go through k. Therefore, the initial load of k is

E(k)m +

✓
mc

2

◆
.

Examining Cyclic Structures 31

Now let vi,j be a vertex along path i (not equal to u or k). When we re-
move this vertex, one of our paths becomes broken. The number of paths
from the E(k) vertices off of k decreases by the number of vertices dis-
connected, equal to D(vi,j). Furthermore, while we maintain (mc�li

2) paths
through k for our vertices still in the cyclic structure, we now must add
single paths between the newly disconnected part and our cycle. This con-
tributes (j � 1+ E(Pi,j�1))(m � E(Pi,j�1)� j + 1) paths. Thus, the new load
of k is

E(k)(m�D(vi,j))+ (j� 1+ E(i, j� 1))(m� E(i, j� 1)� j+ 1)+
✓

mc � li
2

◆
.

Thus, the load effect of vertex vi,j is

�E(k)D(vi,j)�
1
2
(l2

i + li � 2mcli) + (j � 1 + E(Pi,j)(m � E(Pi,j�1)� j + 1).

Now we consider the load effect of u. When we remove u, all paths
become disconnected and we have a cycle free graph (we stated that the
only cycles were those created by the Pi’s). Therefore, the load of k is given
by

(Â
i<j

(E(Pi) + li)(E(Pj) + lj)) + E(k)(m � 1 � E(u)).

and the load effect of u is

(Â
i<j

(E(Pi) + li)(E(Pj) + lj)) + E(k)(m � 1 � E(u))� E(k)m �
✓

mc

2

◆
.

Thus, we only consider removing u if it has a positive load effect or

(Â
i<j

(E(Pi) + li)(E(Pj) + lj)) + E(k)(m � 1 � E(u)) > E(k)m +

✓
mc

2

◆
.

The load effect of vertex vi,j can be calculated relatively simply by run-
ning through each path and tallying each E(Pi,j) since we simply check the
weight of any vertex adjacent to vi,j with a single edge-disjoint path to k.

32 Structural Properties

This takes O(n) amount of time after having found all-pairs max flow since
we visit each vertex at most once. Then, for each vertex we can compute
the load effect directly.

Suppose that this value is 0. Notice that if we remove some subset
of vertices, vi,j either has a single edge-disjoint path to k, in which case
we don’t want to remove it, or the number of paths between k and u has
decreased.

If vi,j still has at least two paths to k, then we can simplify the graph by
the process in Section 5.2.1 and recompute the load effect of vi,j. Whenever
we remove a subset, we are breaking some paths between u and k. Thus,
E(k) increases, and m and mc decrease. Furthermore, since we never con-
sider removing vertices with a single edge-disjoint path to k, every E(vi,j)
remains constant. Thus, the new load effect decreases. It is still not benefi-
cial to remove vi,j.

If we compute the above value for some graph G, any vertex with a
negative load effect on k in this case should be marked as ignorable since it
is never beneficial to include this vertex in our subset.

5.3.3 k in a Single Chordless Cycle

Theorem 5.10. Suppose k is in a single chordless cycle C of length l + 1 but is in
more than one cycle overall. Suppose that C has only two vertices u and v adjacent
to three vertices in a cycle with k. Let lk be the number of vertices on the path
between u and v that contains k, not including k. Let m be the number of vertices
in a cycle with k but not in C. Then,

• The load of a vertex not in C is nonpositive.

• If s is a vertex on the path between u and v in C that does not contain k (not
including u and v) whose removal splits the previous cyclic structure into
two parts: one with n1 vertices and one with n2 vertices, then the load effect
of s is at least

E(k)(n � D(s)� E(k)� 1) +
✓

l0

2

◆
+ l0k(m + l0 � l).

• If s is a vertex on the path between u and v in C that contains k (including
u and v) whose removal results in a new single chordless cycle C0 of length
l0, the load effect of s is

�E(k)D(s) + n1n2 �
✓

l
2

◆
� lkm.

Examining Cyclic Structures 33

Figure 5.5 An example of a graph G where k is in a single chordless cycle
C (whose edges are bolded) of length l + 1 = 6 but is in more than one cycle
overall and C has only two vertices u and v adjacent to strictly greater than two
vertices in a cycle with k.

For an example, see Figure 5.5. In this graph, C, consisting of the bolded
edges, is our single chordless cycle of length l + 1 = 6. There are lk = 2
vertices (a and b) on the path between u and v that contains k, not including
k. Furthermore, there are m = 5 vertices in a cycle with k that are not in C.

Proof. There are E(k)(n � E(k)� 1) paths between w and all other vertices
in the graph. There are (l

2) paths that must go through k since any pair of
vertices on C has at least two edge-disjoint paths, one of which must go
through k.

Furthermore, any vertex s in a cycle with k but not in C has at least two
edge-disjoint paths to any vertex on the path between u and v in C that
contains k, one of which must go through k. However, s has two edge-
disjoint paths to any vertex on the path between u and v in C that does
not contain k (not including u and v) neither of which must pass through k
since we can just choose a direct path from u and a direct path from v.

Consider a pair (s, t) where s is any vertex not in C. Then if any edge-
disjoint path between s and t passes through k it must not be using the
other arc of C since u and v both have degree three (not considering edges to

34 Structural Properties

Figure 5.6 An example in which any edge-disjoint path between s and t not
in C does not have to contain k. The path on the left passes through k, but the
path on the right does not. Since u and v have degree three, we cannot have
both paths.

leaves). We can use this other path when k is removed without affecting the
number of edge-disjoint paths between s and t. For example, in Figure 5.6,
we can either chose the path on the left through k or the path on the right
that does not pass through k. Since u and v have degree three, we cannot
have both paths.

Thus, the initial load of k is

E(k)(n � E(k)� 1) +
✓

l
2

◆
+ lkm. (5.1)

Consider any vertex s in a cycle with k that is not C. Then, this cycle
must contain u and v since u and v are the only vertices on C adjacent to
strictly greater than two vertices in a cycle with k. Removing s maintains
the general structure described above, but the number of vertices in the
graph decreases. Therefore, the load effect of s on k is nonpositive.

Let s be a vertex on the path between u and v in C that does not contain
k. If we remove s, k is in another single chordless cycle C0 with length l0.
Thus, the load effect on k is at least

E(k)(n � D(s)� E(k)� 1) +
✓

l0

2

◆
+ l0k(m + l0 � l). (5.2)

If Equation 5.2 > Equation 5.1, then removing s has a positive load effect

Examining Cyclic Structures 35

Figure 5.7 An example of a stack of cycles. When we remove s, we maintain
the same general structure.

on k. If G � s has a similar structure to G (the new single chordless cycle
has only two vertices u0 and v0 adjacent to greater than two vertices in a
cycle with k both with degree three), then we are guaranteed for the load
effect on k to be exactly

E(k)(n � D(s)� E(k)� 1) +
✓

l0

2

◆
+ l0k(m + l0 � l).

Thus, if the value decreases, s does not have a positive load effect on k.
An example in which this occurs is when we have a stack of cycles. See
Figure 5.7.

Let s be a vertex on the path between u and v that contains k (including
u and v). If we remove s then all vertices have a single path to k. Suppose
that this splits the previous cyclic structure into two parts: one with n1
vertices and one with n2 vertices (n = n1 + n2 + E(k) + D(s) + 1). Then,
the load of k is

E(k)(n1 + n2) + n1n2.

The difference in loads is

�E(k)D(s) + n1n2 �
✓

l
2

◆
� lkm.

36 Structural Properties

Note that if we remove a subset of vertices but maintain the general
structure of G, then this number only decreases. In that case if the difference
in loads is non-positive we can mark s as ignorable.

These cyclic structures appear quite frequently in smaller graphs and al-
low us to eliminate vertices from consideration. However, for larger graphs
these cases rarely occur since the average vertex degree increases. Future
work needs to be done to relate these cases together and generalize the
structure of the graph.

5.4 Pairs of Vertices

We now consider removing pairs of vertices at a time. Determining which
subsets of size two have a positive load effect simplifies the analysis. Addi-
tionally, the hope is that if we can analyze these pairs, then we can extend
these results to larger subsets. To determine which pairs to consider for a
subset we develop some necessary conditions below for the pair to have a
positive load effect.

Let G be a graph with key vertex k. Let u and v be two distinct vertices
in G not equal to k. Let Ek(G, {u}) and Ek(G, {v}) be the individual load
effects of u and v, respectively. Then, the following are necessary conditions
for {u, v} to have a positive load effect on k.

Theorem 5.11. If Ek(G, {u, v}) > 0 and greater than the individual load effects
of u and v, then neither u nor v has a single edge-disjoint path to k.

Proof. Without loss of generality let u have a single edge-disjoint path to k.
Consider the graph with v removed. u either has a single edge-disjoint path
to k or no path. By Theorem 5.6, removing u has a nonpositive load effect
on k. Thus, removing v alone has a greater load effect on k than removing
u and v.

Theorem 5.12. If Ek(G, {u, v}) > 0, Ek(G, {u, v}) is greater than the individual
load effects of u and v, and u and v are in separate components in G \ k, then
Ek(G, {u}) > 0 and Ek(G, {v}) > 0.

For an example, see Figure 5.8.

Proof. Consider the graph G with k removed. Let Su and Sv be the subsets
of vertices in the component of u and v, respectively. Note that Su 6= Sv.
Removing u or v cannot increase the number of edge-disjoint paths be-
tween vertices in separate components. Furthermore, since these vertices

Pairs of Vertices 37

Figure 5.8 An example where u and v are in separate components in G \
k, Ek(G, {u}) > 0, and Ek(G, {v}) < 0. Here, k has a load of 46. While
u has a load effect of 16, v has a negative load effect of -16. Furthermore,
Ek(G, {u, v}) = 1. Thus, is not beneficial to remove both u and v.

are in separate components when we remove k, these paths must all pass
through k and contribute to the load of k.

When we remove a vertex, we decrease the number of these paths be-
tween components. Thus, in order for it to be beneficial to remove both
u and v, each vertex must increase the number of edge-disjoint paths that
pass through k between vertices in their own component. Therefore, each
vertex must have a positive load effect on k.

Theorem 5.13. If Ek(G, {u, v}) > 0 and greater than the individual load effects
of u and v, then the list of cycles that contain u cannot be a subset of the cycles that
contain v.

For an example, see Figure 5.9.

Proof. Suppose by way of contradiction that the list of cycles that contain
u is a subset of the cycles that contain v. Consider the graph G with v
removed. u is no longer involved in any cycles. Thus, u has a single vertex-
disjoint path to k. By Theorem 5.7, removing u has a nonpositive load effect
on k. Thus, removing v alone has a greater or equal load effect on k than
removing u and v.

Theorem 5.14. If Ek(G, {u, v}) > 0 and greater than the individual load effects
of u and v, then all cycles with v and k cannot contain u and vice versa).

For an example, see Figure 5.10.

Proof. Consider G \ {v}. Suppose in G any cycle containing u and k con-
tained v. Then by removing v these cycles have all been disconnected and
u is no longer involved in any cycles with k. By Theorem 5.7, removing u

38 Structural Properties

Figure 5.9 An example in which the list of cycles that contain u is a subset of
the cycles that contain v. When we remove v, u is no longer in a cycle with k
and Ek(G, {u, v}) Ek(G, {v}).

Figure 5.10 An example in which all cycles with v and k contain u. When we
remove v, u is no longer in a cycle with k and Ek(G, {u, v}) Ek(G, {v}).

has a nonpositive load effect on k. Thus, removing v alone has a greater or
equal load effect on k than removing u and v.

Theorem 5.15. If Ek(G, {u, v}) > 0 and u and v are not in a chordless cycle
together, at least one must have a positive load effect on k.

Proof. Suppose that Ek(G, {u}) 0 and Ek(G, {v}) 0. Let Ek(G, {u, v}) >
0 and suppose, by way of contradiction, u and v are not in a chordless cycle
together.

If we just remove u from the graph, we know that Ek(G, {u}) 0.
For any pair (s, t) (s 6= t), consider the paths that now must go through
k after v is removed from the graph G \ {u}. If this number increases,
then Ps,t({u, v})� P({u, v, k}) > Ps,t({u})� Ps,t({u, k}) where Ps,t(S) is the
number of edge-disjoint paths between s and t with the subset S removed.

Pairs of Vertices 39

Figure 5.11 An example in which removing u and v increases the number of
edge-disjoint paths between s and t that must go through k, but removing u or v
alone does not.

Removing v creates more paths that must go through k. This means
that removing v from G \ {u} decreases the number of edge-disjoint paths
between s and t that do not use k. However, since u and v are not in a
chordless cycle together, these paths must also be destroyed by removing
v in G. Otherwise, this implies a path not using k that goes through v in
G can reroute through u but is destroyed when u and v are both removed,
implying u and v are in a chordless cycle together. See Figure 5.11 for an
example.

Thus, the load effect of v on k in G \ {u} is less than or equal to the
load effect of v on k in G. Removing v still has a negative load effect and
Ek(G, {u, v}) 0, which is a contradiction. u and v must be in a chordless
cycle together.

5.4.1 Implementation

In order to determine when the above conditions hold we can use the fol-
lowing techniques. In Theorem 5.11, we are interested in which vertices
have a single edge-disjoint path to k. To determine if a vertex v has a sin-
gle edge-disjoint path to k, we can calculate the max-flow from v to k in G
where each edge has capacity one. If the max-flow is one, then v has a sin-
gle edge-disjoint path. Otherwise, v has more than one edge-disjoint path
to k. This method takes time polynomial in m and n.

In Theorem 5.12, we want to know which vertices are in the same com-
ponent of G \ {k}. To compute the components, we can run BFS in H =

40 Structural Properties

G \ {k} from a random vertex. All reachable vertices determine one com-
ponent. We then choose an unvisited vertex and start again. At most we
can have n components, so this method is also polynomial in m and n.

Theorems 5.13 and 5.14 refer to the cycles of vertices. To determine if
the list of cycles of u is a subset of the cycles of v, we can simply remove
v and search for a cycle with u. This can be done using max-flow where
we create a copy of u, u0, that is adjacent to all neighbors of u. We then
try to push one unit of flow between u and u0, but require that we use at
least three edges (or the sum of edge flows is greater than two). This is
because otherwise we could use construct a cycle (u, x, u0), which is not
a cycle in the original graph. If feasible, we have found a cycle with u.
Otherwise, there cannot exist a cycle with u in the original graph. Thus, we
can determine the solution in polynomial time using linear programming.
At most, we need to check O(n2) pairs so the total time to determine if this
condition holds is polynomial in m and n.

In Theorem 5.14, we want to determine if every cycle with k and v con-
tains u and vice versa. To check this, let H = G \ {v}. We then check if
u and k are in a cycle. If so, then a cycle with u and k does not contain v.
Otherwise, every cycle with v and k contains u. We then repeat and remove
u. To check if two vertices u and k are in a cycle, we can use max-flow be-
tween u and k where each edge and vertex have capacity one. The vertices
are in a cycle if and only if the max-flow is two or greater. At most, we need
to check O(n2) pairs so the total time to determine if this condition holds is
polynomial in m and n.

Lastly, in Theorem 5.15, we need to determine if two vertices u and v
are in a chordless cycle. To do this, we use a modified network flow linear
program in which edges and vertices have capacity one. We then try to
push two units of flow between u and v. Let xi,j be the flow across edge
(i, j), then we create a new value yi,j for each edge where

Â
(i,k)2E

k 6=j

xi,k + Â
(k,j)2E

k 6=i

xk,j � yi,j.

If (i, j) has unit flow across it, yi,j = 0 since i cannot have flow to another
vertex besides j and j cannot have flow into it besides from i. Otherwise, if
i and j participate in flow but xi,j = 0, then yi,j > 0. Thus, only a chordless
cycle has

Â
(i,j)2E

yi,j = 0.

Pairs of Vertices 41

Let the objective function for our linear program be

Â
(i,j)2E

yi,j.

By minimizing this objective function, we can determine if u and v are in a
chordless cycle in polynomial time, as desired.

Thus, we can determine if the conditions required for Theorems 5.11,
5.12, 5.13, 5.14, and 5.15, in polynomial time for all pairs.

We have now developed some structural characteristics of subsets with
a positive load effect on k. These characteristics allow us to eliminate po-
tential vertices or subsets and could be helpful in developing a heuristic.
In particular, Theorem 5.15 proves a strong relationship for pairs of ver-
tices with a positive load effect. Future work should be primarily devoted
to this area and extending these results to more generalized graphs and
subsets. This is discussed in Chapter 6.

Chapter 6

Conclusions and Future Work

In this thesis, we developed tools to increase the amount of communication
through a terrorist network’s key member, which could potentially increase
the visibility of that member.

Using the model presented in Martonosi et al. (2011), this paper demon-
strated that LOMAX can be formulated as a mixed-integer linear program.
However, given a graph G = (V, E) where n = |V| and m = |E|, the pro-
gram’s variables and constraints grow on the order of O(mn2). This gives
us a better understanding of the computational complexity of this prob-
lem. As shown in Table 3.1, the model runs out of memory for graphs with
more than 30 vertices or around 75 edges. A Bender’s decomposition al-
gorithm was implemented for this mixed-integer linear program. Results
again showed that this method is impractical for larger graphs and only
generated results for graphs with less than 30 vertices. However, the model
and algorithm do show that LOMAX is a linear problem.

In Chapter 5, we developed necessary conditions for vertices to have
a positive load effect within a subset. In particular, we examined some
simple structures and pairs of vertices in which the analysis was easier.
These properties allowed us to eliminate vertices from consideration and
reduce the complexity of the problem. Future work should be devoted to
developing new approaches to solving this problem either through other
decomposition algorithms or approximation algorithms.

The simplification of the graph and the structural characteristics of ver-
tices and subsets with positive load effect, given in Chapter 5, provide a
good start for reducing the complexity of this problem. However, further
simplifications need to be made. In particular, analysis of more general
cyclic structures could provide insight into how vertex removals influence

44 Conclusions and Future Work

the structure of the graphs and which future vertices we might want to re-
move. Theorem 5.15 could provide a good basis for analysis of larger sub-
sets since it hints that any subset with a positive load effect can sometimes
be broken into smaller subsets that each have a positive load effect.

Extension of the theorems in Chapter 5 to more than two vertices would
simplify the computations in solving LOMAX, and might be useful for de-
veloping any future heuristics.

Bibliography

Bertsimas, D., and J.N. Tsitsiklis. 1997. Introduction to Linear Optimization.
Belmont, Massachusetts: Athena Scientific, 2nd ed.

Israeli, E., and R.K. Wood. 2002. Shortest-path network indiction. NET-
WORKS 40(2):97–111.

Li, L., D. Alderson, R. Tanaka, J.C. Doyle, and W. Willinger. 2005. Towards
a theory of scale-free graphs: Definition, properties, and implication. In-
ternet Mathematics 2:4.

Martonosi, S.E., and D.S. Altner. 2009. RUI: Collective research: Algo-
rithms for threat detection: Detecting clandestine members of covert net-
works. NSF Grant Proposal.

Martonosi, S.E., D.S. Altner, M. Ernst, E. Ferme, K. Langsjoen, D. Lindsay,
S. Plott, and A. Ronan. 2011. A new framework for network disruption.
Unpublished manuscript.

Motter, A.E., and Y. Lai. 2002. Cascade-based attacks on complex net-
works. Physical Review E 66(6):065,102–065,105.

Royset, J.O., and R.K. Wood. 2007. Solving the bi-objective maximum-flow
network-interdiction problem. INFORMS Journal on Computing 19:175–
184.

Sageman, M. 2004. Understanding terrorist networks. URL http://www.fpri.
org/enotes/20041101.middleeast.sageman.understandingterrornetworks.html.
Accessed September 20, 2011.

http://www.fpri.org/enotes/20041101.middleeast.sageman.understandingterrornetworks.html
http://www.fpri.org/enotes/20041101.middleeast.sageman.understandingterrornetworks.html

	Abstract
	Acknowledgments
	Introduction
	Literature Review
	Previous Network Interdiction Research
	A New Model

	Optimization Framework
	Max-Flow Subproblems
	Choosing a Subset
	Implementation

	Decomposition
	Bender's Decomposition
	Delayed Column Generation
	Application
	Implementation

	Structural Properties
	Previous Results on Single-LOMAX
	LOMAX
	Examining Cyclic Structures
	Pairs of Vertices

	Conclusions and Future Work
	Bibliography

